Module 6 Layout Hierarchy Concept

	Learning Outcome

	At the end of this unit, participants will

· Know what hierarchy and instance arrays are.

· Be able to traverse hierarchy using schematic and layout tools.

· Be able to create and remove hierarchy in layout.

	Introduction

	For today design capacity with millions of transistor, it is almost impossible to carry out the implementation with a flat hierarchy design. In order to improve the design cycle throughput time, hierarchy concept is widely used.

	Hierarchy
Block diagram of hierarchy
Layout representation of hierarchy

Schematic and layout hierarchy
	· Hierarchy - different levels of layout on a chip

· Country (state (county (city (neighborhood

· Chip (cluster (unit (block (cell

· Instance - a cell placed within another cell

· Perak is an instance of a state

· Intel is an instance of a corporation

· Child Cell - cell contained in larger cell is child of that cell

· Parent Cell - cell containing smaller cells is parent of those cells
· Hierarchy organizes & simplifies complexity
[image: image1.jpg]UNIT LEVEL

Block Level Block Level
leaf’ leaf’ leaf leaf’
cell cell cell cell
level level level level

[image: image2.jpg]~<——Top Cell

Leaf Cell

· Hierarchy is usually determined by schematic design

· Hierarchy should make sense for layout

· Suggest modifications if necessary

· Schematic organization of logic follows layout design

· Schematic and Layout hierarchy should match

· Simplifies use of design and verification tools:

· Allows verification to be run at intermediate levels

· Verification runtimes are faster

· Easier to get parasitic data back into simulations

· Easier to complete ECO (Engineering Change Order)

	What is array?

Stepped Cells
Stepped Cells with space

	· Array - ordered instantiation (placement) of same cell or objects in a design

· Object can be a cell, group of cells, or other structure

· Objects are related, physically and logically
· Array can extend in X and/or Y direction
· Flipping – each alternate instance is the mirror image in X and/or Y direction of the original cell

· Stepping – the distance between neighboring instances
· User can specify stepping (counted from origin to origin of instances)

· Row vs column – row horizontal, column vertical
· The example below shows multiple cell instances placed with the same orientation (no flipping) and same distance between neighbors.

· The origin of the instantiated cell is determined by the small triangle in the lower left corner.

· Origin at X:0, Y:0 of child cell
· Example: 6x1 array of cell circuit

[image: image3.jpg]circuit_0

circuit_1

circuit_2

circuit_3

circuit_4

circuit_5

· This example shows multiple cell instances placed with the same orientation, without flipping but with stepping. Notice the equal distance between each cell.
· Example: 4x1 array of cell circuit

[image: image4.jpg]circuit_0

circuit_1

circuit_2

circuit_3

	Flipped Cells

Basic hierarchy planning

Understand the constraints

Basic Wire Planning
	· This example shows multiple cell instances placed with the same orientation, with flipping and no stepping
· Example: 5x1 array of cell circuit

[image: image5.jpg]circuit_()

circuit_I

circuit_2

circuit_3

circuit_4

This is included

· Understanding constraints

· Basic Wire Planning

· Block Sizing Fundamentals

· Block Placement Fundamentals

· Datapath Definition

· Basic Datapath Pitch Planning

· Estimating Layout Time

· Interface signals

· Critical signals

· Metal allocations

· Schedule

When creating a wire plan, you need to:
· Include all the input and output pins on your block.

· Include all the M2/M3/M4 feed thru to your block.

· Include shielding if needed.

· Plan to have two or more power lines in larger-pitch cells.

· Use the standard line pitch for signals and power lines (unless they are specified differently).

· Plan to share tracks when possible.

	Wire planning example

	· Keep in mind, when parallel lines are routed at minimum design rule widths, there is no room to make a connection to the upper layer due to metal overlap requirements for the via.

· Avoid making unnecessary jogs in routing (i.e. if a wire can go straight it should). This will help performance and area.

· Your wire plan specifies the tracks needed for your over-the-cell routing, in conjunction with your port definitions.

· You need a wire plan to see if your fub will be metal-limited and to reserve room for over-the-cell routing. Make sure this is planned before starting layout.

· Estimate the minimum height required to draw this “buffcell” block.

[image: image6]
	
	Given: - cell pitch = 12um.

 - horizontal M2 lines (minimum space = 0.50um)

 . “in” @ metal width = 0.50um

 . “out” @ metal width = 0.80 um

 . Power lines @ metal width = 1.0um

Then, device legged for 12 times.

[image: image7.jpg]

	Block sizing fundamentals

Block placement fundamentals

	The area required by a design is determined by the number of transistors “device-limited” or by the interconnects “metal-limited”.
· If device-limited, the area is based on transistor density. The density is found by multiplying the number of transistors by the area needed for one transistor (in sq. mils/device).

· If metal-limited, the cell’s area is determined by the total number of line pitch.

· Place blocks efficiently using the least amount of routing. This is especially important for critical nets.

· The Clock driver should be placed close to the clock input.

· If available, use the “Layout Planner” as a template to start placing your blocks.

· Utilize track-sharing and use the cross-reference file to understand how the blocks relate to each other.

	Datapath

Basic datapath pitch planning

Estimating layout time

	· Datapath describes layout that has the chips’ data buses running through it and being used in it, in a ‘bit-slice’ fashion.
· Data busses are large (up to 86 bits for floating point), and typically use arrays to implement the logic; one cell is created, and then instantiated for each data bit.
· Unique inputs and outputs to particular cell positions (bits) are usually handled with ports.
· Making the right connections at the upper levels is called ‘programming’.
· In planning a datapath pitch (cell width), the pitch will usually be determined by the widest cell.
· It is desirable to match pitches through different parts of the chip to reuse common layout (for example, adders).
· Pitches usually fall in the range between 25 and 60 microns. Outside these values, the aspect ratios become inefficient and/or cumbersome to use.
· Datapath Pitch Planning Process:

· Obtain a cross-reference file for all your blocks.

· Have Wire planning and Cell pitch sizing ready.

· Don’t skimp on power line widths.

· If the pitch seems too narrow for an efficient layout, you can always upsize it. Don’t go any smaller than the worst-case pitch.

· Be creative.

· Plan the layout before estimating the schedule.

· Determine your priorities: is getting the job done quickly or is density* more important for this project?

· 75 devices/week is an example of productivity factor from Wmt project. The actual number depends on the type of layout (Datapath vs. Control vs. Ram) and the layout tools used.

· Do not include your planning time here because Layout and Planning are two different tasks. You should have a plan ready before you can begin to estimate the layout time.

[image: image8.png]

[image: image9.png]

[image: image10.png]

[image: image11.png]

CMOS VLSI Layout Design

[image: image12.png]Read ingh_glb myngoc_1 schematic 0.5 (=]

o000y

buffcell
buffcell<15:0>

